资讯

快递包装所带来的污染需要我们更多的关注

我国快递业在近几年得到快速发展,从2017年起,跨入分发量日均一亿的时代。从80年代的153万件提升至2018年的507亿件,30年间年增速高达41.5%。 在连年突破快递业务量的情况之下,今年有望继续突破达600亿件。纵观全球,我国已经成长为世界上发展最快、最具活力的新兴寄递市场,包裹总量更比美国、欧盟、日本等发达经济体的总和还要多,我国已为世界范围内的快递增长贡献率达到50%以上,成为世界邮政业的动力源。 “毒袋”流通,环境人体齐受害 然而,随着快递业的迅速发展,也带来了不少问题。 比如:快递包装的问题主要表现在浪费、污染等方面。根据数据显示,在我国尤其是特大城市中,快递包装垃圾已经占到城市生活垃圾增量的93%,部分大型城市也达到85%~90%,国家先后印发了《快递封装用品》新国标、《推进快递业绿色包装工作实施方案》、《行业绿色高质量发展目标任务分解安排》等条例,并且在7月上海强制垃圾分类开启后,前几日上海邮政管理局又编制发布了《上海市快递包装物垃圾分类指引》,多法规共同规范快递包装的污染和回收治理问题。 而另外一边,虽然关于快递包装的生产离我们比较遥远,但是随着不少生产环境的曝光,也令人不禁心生隐忧。在大大小小快递盒外封罩的五颜六色的快递袋的背后,其生产问题或许已经超乎你的想象。 在网购平台上搜索的各种快递袋的出售信息中,不少厂家以PE新料做原料,但是更多使用的是PE再生料。使用再生回料来制作快递袋确实是对废旧资源的一种有效利用,不过再生料的来源却并不安全。 为了更加结实耐用,其制造过程中添加了大量塑化剂、阻燃剂,有些不良厂商因贪图小利而使用劣质油墨印刷,甚至有一些回料快递袋的制造过程中,有不少医疗和化工垃圾混杂在内,这些垃圾往往并没有得到良好的清洗净化,携带的病毒、细菌等危险物质随着生产附着在快递袋上,对接触者的健康产生严重威胁。这也正是有些人对快递“过敏”的原因。这种劣质快递袋往往较薄、脆,韧性差,手感颗粒感重,并且异味重。 这些危险廉价的回料正是一些不正规的小作坊生产原料的重要来源,在市面上不流通,通过熟人拿货。而这些小作坊往往藏匿在乡村等偏僻之地,以躲避相关部门的查办。这些生产厂家没有生产执照,也不会按照规定生产,因而生产过程中产生的污染也随意排放,对生态和人身健康产生危害。 PE再生料制作的快递袋虽然是对资源的再利用,但实际上它属于不可降解物,在地下能存在百年以上。而“毒袋”在漫长的降解时间中还会对周围环境进一步释放有毒物质,这也是我们不希望看到的。 快递包装绿色生产需要政策来规范 2016年发布的《推进快递业绿色包装工作实施方案》中规定了快递包装业包装工作的总体目标,提出稳步推进快递业包装的依法生产、节约使用、充分回收、有效再利用,实现“低污染、低消耗、低排放,高效能、高效率、高效益”的绿色发展。 在去年5月1日起开始施行的《快递暂行条例》中对快递包装提出了要求,鼓励使用可降解、可利用的环保包装材料,鼓励企业回收包装材料,以实现包装材料的减量。 8月31日通过了《电子商务法》,其中明确规定快递物流服务提供者应当按照规定使用环保材料,实现包装材料的减量化和再利用。并且国务院和县级以上地方人民政府及其有关部门应当采取措施,支持、推动绿色包装、仓储、运输,促进电子商务绿色发展。 随即9月1日又正式实施了《快递封装用品》新国标,从绿色化、减量化、可循环三方面对原有标准进行了进一步补充完善。包括降低快递封套用纸的定量要求,推广低定量、高强度原材料在快递业的应用,鼓励快递包装箱重复使用等。值得一提的是,其中指出了进一步增加了对快递包装中重金属和特定物质的限值,如包装中铅、硌、汞、铬等重金属的含量每公斤应小于100毫克,对邻苯二甲酸酯和苯类溶剂等残留量进一步限制等。除此之外还倡导使用生物降解塑料快递袋以及对印刷油墨提出减少使用并倡导使用水基型油墨等。 从以上能够看出,近年来我国对快递包装业提出的要求除了要求加强重复利用、轻量化等节约措施之外,主要集中在可降解、减少有毒害物质残留等。 规范快递包装行业标准,需要提升对包装生产企业的生产能耗原料把控、增强其环保意识、推广新兴技术,并且加强部门监管力度工作、建立联合惩戒机制、提供相应政策支持、试点绿色基地建设等,带动环保、可降解快递包装材料企业的发展等,力争早日淘汰市场中有毒有害物质超标的包装物料。 结语:快递毒包装对环境和人体都有极大的危害,打击有毒包装,现阶段除了依靠相关部门的监管,生产企业自觉之外,消费者的监督也是促进快递包装行业健康有序发展的重要动力。虽然2008年的循环经济促进法以及各种指向快递包装的政策都对包装生产做出了一定的规范,但我国关于快递包装生产仍尚无一个成熟、完善、统一的法规,在现有的基础上推动其成型应用还需要各界的共同努力。 阅读延伸:快递包装袋优劣辨别 一看:辨颜色。使用新料的包装袋一般是白色或者浅色;使用回料制作的包装袋颜色多暗沉,黑色、灰色灰色居多,还有蓝色、绿色、粉色等颜色。 二摸:试手感。好的包装袋袋体光滑平整,有良好的韧性,薄厚均匀;劣质包装袋粉感重,不光滑、不均匀,易扯破。 三嗅:闻气味。好的包装袋塑料味小甚至没有;劣质包装袋有塑料味甚至刺鼻气味。 拆过包装袋需要尽快洗手,祛除残留在包装上的细菌病毒以及塑化剂等其他添加剂。 相关阅读 1、塑料垃圾滞留发达国家 日媒:对海外市场依赖太严重 2、微塑料污染与日俱增,土壤修复箭在弦上! 3、限塑令实施11年 废塑料不减反增 4、塑料 整体弱势格局难以改变

2019-10-09

塑料垃圾滞留发达国家 日媒:对海外市场依赖太严重

10月8日报道 日媒称,以发达国家为中心,跨境流通的塑料垃圾无处可去的情况日渐浮出水面。在中国禁止进口污染环境的垃圾之后,慌张的发达国家将塑料垃圾运往东南亚,但也遭到东南亚国家的反对。无法出口的部分垃圾因而滞留在发达国家国内。尽管各国加快采取禁止一次性塑料产品和强化焚烧处理等对策,但此前依赖海外市场处理垃圾的情况过于严重,垃圾滞留问题并未得到解决。       据日本经济新闻网10月7日报道,日本环境大臣小泉进次郎9月11日在就任后首次记者会上强调称,将在应对海洋塑料垃圾方面积极宣传日本举措。其发言动机是考虑到了6月的G20大阪峰会。G20针对在2050年之前将污染海洋的塑料垃圾减为零的目标达成协议,世界的目光随之投向了塑料垃圾。       从“资源”到垃圾       日媒称,塑料垃圾为何会迅速成为严重的国际问题呢?梳理日本贸易振兴机构(JETRO)等的数据,会发现以发达国家为中心,各地有很多等待处理的塑料垃圾。       塑料垃圾曾是成为服装和再生塑料的原材料的“资源”。2017年底,因塑料垃圾加剧环境污染,中国决定禁止进口塑料垃圾。结果,2018年美国、日本塑料垃圾对华出口锐减。       报道称,迅速成为新的出口目的地的是亚洲其他国家。美国向马来西亚出口了约20万吨,日本也向泰国运送约19万吨,但整体出口量未能达到近几年的水平。无法出口的部分垃圾被认为滞留在发达国家国内。       报道指出,令事态进一步加重的是东南亚也接连反对进口。菲律宾和马来西亚相继表明了送回已接收垃圾的意向。       处理技术不成熟       报道称,如果处理技术不够成熟,塑料垃圾即使只有轻微的污染也无法回收利用。日本环境省指出,“即使在发达国家可以回收利用,到菲律宾等国却可能变成‘脏污垃圾’”。控制危险废料跨境转移的《巴塞尔公约》新增加的禁止出口‘脏污塑料垃圾’的规定将于2021年1月生效。       日本有6成的塑料垃圾通过焚烧处理。东京农工大学教授高田秀重表示“推进(利用焚烧能量的)热能回收利用不利于应对全球变暖”,目前尚看不到大幅减少垃圾总量的前景。       报道称,欧洲的塑料垃圾有3成进行填埋,4成以上焚烧处理。而美国有7成以上的塑料垃圾(2015年)采取了填埋处理。         报道指出,塑料为人们的生活提供便利,但问题在于能否使塑料垃圾成为有价值的“资源”。 相关阅读 1、微塑料污染与日俱增,土壤修复箭在弦上! 2、限塑令实施11年 废塑料不减反增 3、旭化成开发聚酰胺泡沫塑料,用于汽车轻量化和降噪 4、塑料 整体弱势格局难以改变

2019-10-08

精神科药物可以用作抗癌药物?

癌症是一个主要的公共卫生问题,也是全球疾病负担的主要原因。国际癌症研究机构(IARC)估计,到2030年,仅人口的增长和老龄化预计将导致2170万新癌症病例和1300万癌症相关死亡。遗传因素,接触辐射和危险化学品,不健康的生活方式和其他风险因素继续增加未来人群的关于癌症方面的负担。 目前的化疗方案主要包括烷化剂,抗代谢物,抗生素,拓扑异构酶抑制剂和有丝分裂抑制剂,三十年来基本保持不变。抗癌药物不断在美国食品和药物管理局(FDA)药物批准名单中占主导地位,尽管2016年出现暂时下降。癌症药物发现的创新仍然是一项极具挑战性的工作。每年只有大约10种新的抗癌药物被FDA批准。新药开发的高成本和耗时性质是癌症药物发现的重大挑战。对68种随机选择的批准药物的分析估计,需要15年和8.02亿美元才能将新药推向市场。预审批总费用也以每年7.4%的速度增长。 开发新药的挑战表明需要探索治疗人类癌症的替代和新颖的可负担方法。将现有药物的适应症从一个治疗领域转换为包括治疗其他疾病的策略,也称为“药物再利用”或“药物重新定位”,根据现有的药物临床试验缩短了临床应用所需的时间结果和毒理学测试。这种新的药物发现方法与传统药物开发相比具有显着的优势。将已知药物和化合物用于新适应症可节省时间并降低将药物推向市场的成本。超过90%的药物未能通过开发过程。在过去几年中,越来越多的制药公司正在投入相当大的努力来提高药物重新定位的效率和成功率。这为基于已知药物的药物发现创造了新的策略。 精神病药物因其具有长期的临床使用历史和可耐受的安全性,并已被用作药物再利用的良好靶标。例如,硫利达嗪[5]已公认的抗微生物性质,它已经显示出对结核分枝杆菌的易感和多药耐药菌株的显着体外活性。由于不利的副作用,硫利哒嗪作为抗精神病药物的使用已经减少,但是研究和最近发现的其抗菌性能证明了其临床疗效的可行性和可靠性。可以进行更多研究以进一步阐明该药剂的其他潜在临床用途。还有许多其他例子,如氟哌啶醇及其衍生物溴哌啶醇,目前已被重新用于治疗各种真菌感染。 精神科药物作为新一代癌症化学疗法也很有前途。一些流行病学研究报告称,接受抗精神病药物治疗的精神分裂症患者的癌症发病率低于一般人群,这表明精神科药物可能对某些人类癌症产生积极影响。在接受精神分裂症药物的患者中观察到前列腺癌,结肠癌和直肠癌的发病率下降。此外,研究还表明,这些抗精神病药物可以在体外和体内诱导各种癌细胞的死亡。在这篇文章里,我们概述了各种用于癌症治疗的精神药物的再利用,并回顾了这些精神病药物的抗肿瘤作用的假定机制。此外,我们将讨论剩余的局限性和挑战,包括潜在的致癌性,有争议的临床研究以及一些精神药物的耐受性差。 精神科药物的抗肿瘤特性 开发新药的高成本和全球癌症负担日益严重,增加了人们对新型,负担得起的抗肿瘤药物的研究和开发的兴趣。精神病药物已经用于各种精神疾病数十年,并且目前据报道除了它们的抗精神病作用之外还具有针对多种恶性肿瘤的有效抗癌特性。 据报道,用第一代典型的抗精神病药物penfluridol治疗可通过诱导自噬介导的细胞凋亡来抑制胰腺肿瘤的生长。Wiklund等人发现匹莫齐特和非典型精神病药物奥氮平可破坏胆固醇的稳态,从而杀死癌细胞。还有许多具有抗肿瘤作用的神经活性药物的例子,包括抗抑郁药如选择性5-羟色胺再摄取抑制剂(SSRIs),三环类抗抑郁药和单胺氧化酶抑制剂(MAOIs)。戈登等人发现SSRIs 在活检样伯基特淋巴瘤细胞中直接诱导细胞凋亡相关的细胞毒性。在另一项研究中,帕罗西汀和舍曲林诱导剂量依赖性抑制人结肠癌细胞系和结直肠癌细胞异种移植小鼠的活力和增殖。三环类抗抑郁药被发现可抑制神经内分泌肿瘤的生长,包括小细胞肺癌,胰腺神经内分泌肿瘤和Merkel细胞癌。 这些数据表明,精神科药物可能具有临床治疗的抗肿瘤潜力。这些实验还有助于鉴定新的靶向策略,通过重新利用批准的药物,可以在患有各种肿瘤的患者中快速评估这些策略。具有潜在抗肿瘤作用的精神病药物总结于表1中。 表1 具有潜在抗肿瘤作用的精神病药物 脑肿瘤的精神科药物 脑瘤几乎占每年在全世界诊断出的所有癌症相关死亡的2-3%。胶质母细胞瘤(GBM)是最常见的脑肿瘤,具有破坏性和极具攻击性的临床进展。该肿瘤的标准治疗包括手术切除,化疗和放疗。最近,在诸如化疗和新型免疫策略的脑癌的药物治疗中已经取得了重大突破。尽管已经做出了相当大的努力来提高效率,但这种破坏性疾病的临床改善仍然有限。 为了靶向大脑中的肿瘤,抗肿瘤药物必须能够自由地穿透血脑屏障(BBB)。大脑中全身给药的治疗药物的低药物浓度可能有助于脑肿瘤化疗的有限成功。该BBB限制了大多数化疗药物的递送。精神病药物已被证明具有抗各种癌症的抗肿瘤特性,这表明它们在治疗脑肿瘤方面具有潜力。这些药物已在临床环境中长期使用和研究,并可自由穿透大脑,这对脑肿瘤治疗非常重要。此外,精神科药物的化学机制和毒性已得到广泛研究,为新药开发节省了时间。 据最新文献报道报道,有几种精神药物对GBM有效。几十年来,丙戊酸一直被用作抗癫痫药物和情绪稳定剂。近年来,它还被发现抑制包括GBM在内的几种肿瘤细胞的生长。一些研究已经评估并证实这种药物有望用于GBM治疗。有研究表明,丙戊酸可以与常规疗法相结合,除了被识别为HDAC抑制剂,丙戊酸的抗GBM活性是通过分化和诱导介导的血管生成的抑制作用。另一种抗精神病药物匹莫齐特被发现到减少GBM细胞生长和干细胞存活。它被鉴定为USP 1特异性抑制剂,其抑制GMB干细胞发育和放射抗性。 抗精神病药物通过DR途径作用于人类癌症 癌症干细胞(CSC)假说已成为癌症治疗的重要里程碑。CSC与干细胞共享功能特征,包括增强的自我更新,迁移和存活能力,这有助于肿瘤异质性,治疗抗性和转移。CSCs促进肿瘤生长并抵抗分化,是一种罕见的细胞群。 选择性抑制CSC的化合物的鉴定可能是有希望的并且可用于临床前药物筛选。吩噻嗪类化合物包括氯丙嗪,左旋美丙嗪,异丙嗪,三氟拉嗪和硫利达嗪等抗精神药物类药物可抑制各种肿瘤细胞的增殖并诱导细胞凋亡,包括神经母细胞瘤,非小细胞肺癌,胶质瘤,黑色素瘤和白血病。在筛选了数百个小分子后,Sachlos等人发现抗精神病药物硫利达嗪,选择性地靶向CSCs。与其他化合物不同,硫利达嗪通过增强CSC分化而不是杀死它们起作用,表明硫利达嗪可用作选择性抗CSC剂。 为了评估甲硫哒嗪如何发挥其抗CSC活性,Sachlos等人[21]分析了DRs在正常和肿瘤性人多能干细胞(hPSCs)表面的表达,因为已知硫利达嗪是DR拮抗剂。他们发现所有DR都表达在白血病细胞表面,而不是正常的血液干细胞。该发现表明DRs表达可能在CSC中上调。该发现还表明DR途径可以作为某些CSC特异性的生物标志物,并且在临床治疗中具有前景。 精神病药物通过破坏胆固醇体内平衡来杀死癌细胞 胆固醇稳态是人体中受到最强烈调节的过程之一,已经被广泛研究100多年。胆固醇在各种过程中起着关键作用,属于动物细胞膜的重要组成部分,有助于细胞渗透性,亲和力和流动性,同时也是类固醇激素和胆汁酸的前体。胆固醇不足或过多可导致严重后果,包括动脉粥样硬化和代谢相关疾病。胆固醇代谢在跨膜信号传导过程和细胞生长中也起着关键作用。最近的一项研究表明,调节胆固醇和脂肪酸代谢的microRNA33可调节细胞增殖和周期进程。一项发表在癌症研究中的新研究表明,胆固醇稳态可能是前列腺癌治疗的新治疗靶点。 第一代抗精神病药物,被称为典型的精神药物,被认为通过阻断DR2发挥其抗精神病功效,导致锥体外系副作用和高催乳素血症。在20世纪90年代开发了第二代药物,如利培酮和奥氮平等非典型精神病药物。较新的精神药物具有更广泛的结合特征,影响DR以及血清素和组胺受体的活性。其治疗效果与不良代谢影响的风险相关,包括葡萄糖代谢受损,肥胖和血脂异常。研究发现,抗精神病药物可上调参与脂质体内平衡的基因。这些药物通过破坏细胞内运输和胆固醇的合成来上调脂肪生成基因的表达。在澳大利亚进行的一项研究:对抗精神病药(利血平,氯丙嗪,氟哌啶醇,匹莫齐特,利培酮和奥氮平)进行了筛选用于各种其潜在的抗癌作用的肿瘤细胞系衍生成淋巴细胞瘤,神经母细胞瘤,非小细胞肺癌,和乳腺癌。几乎所有这些药物都选择性地抑制癌细胞。此外,药物处理组的基因表达分析表明,奥氮平和匹莫齐特通过破坏胆固醇体内平衡发挥其细胞毒性。他们还发现,与胆固醇抑制剂美伐他汀共同给药可以减少这些精神科药物的副作用。这些结果表明,影响胆固醇体内平衡途径的精神病药物可能是用于癌症治疗的新型化学治疗剂。一些临床研究还发现,奥氮平防止化疗引起的恶心和呕吐。此外,研究报告称,奥氮平在给予患者后会在肺部积聚,这表明它可能在肺癌化疗中有前途。这些研究为未来抗癌药物使用精神药物提供了合理的基础,作为传统药物的替代策略。 精神病药物再利用的挑战和局限 一些研究证实了精神科药物对不同恶性肿瘤的抗癌作用。然而,在进一步临床应用之前需要考虑的这些药物的再利用中仍然存在挑战和限制。 临床使用的悠久历史,现有的药物临床结果和精神药物的毒理学使它们成为药物再利用的良好候选者。但是,长期服用精神科药物可能会导致副作用。服用第一代抗精神病药物的患者更容易出现锥体外系副作用,尤其是氟哌啶醇,zotepine和氯丙嗪。体重增加和相关代谢性疾病已被识别为具有第二代抗精神病药物。精神病药物的其他副作用,如QTc延长,催乳素增加,性功能障碍,镇静,体位性低血压和心律失常对患者来说也是比较不合适的。与长期精神病药物相关的另一个重要问题是耐受性发作,应始终在服用精神病药物的患者中进行评估。由于交叉耐受性问题,之前的精神科药物可能会影响新药使用的效率,这部分解释了为什么新的临床试验不成功。与一般精神病药物相关的耐受性发作相对较低且可接受。Wheler等人发现当与贝伐单抗合用时(11mg / kg静脉注射[IV]每14天一次),丙戊酸(5.3mg / kg口服[PO]每日)在治疗晚期癌症患者中是安全且耐受良好的。然而,还应监测高剂量诱导的神经毒性。在以前的研究中,高剂量的报道丙戊酸与几个神经毒性(患者20-26%),包括疲劳,精神错乱,和相关联的嗜睡。必须考虑所有这些因素,并需要进一步研究以平衡其他临床应用的效益/风险比。 结论 面对高成本和药物开发的风险,研究人员目前正集中精力重新利用现有药物,包括临床试验失败的药物。最成功的药物再利用案例之一是西地那非。在西地那非治疗心血管疾病的1期试验中观察到阴茎勃起后,对勃起功能障碍治疗进行了重新评估。重新利用药物有助于改造旧药物以获得新的适应症,使用已知毒性和药理学的药物使药物开发更具可预测性。它还帮助医生处理标签上和标签外的药物处方。已经发现许多药物对于他们之前未被批准治疗的适应症是有效的。药物再利用为在进一步试验中研究观察到的作用的机制提供了机会。这可能是一个有希望的补充,以及一个更有效和相对快速的新药发现战略。 在这篇文章中,简要分析了抗精神病药物的显着抗肿瘤特性,包括丙戊酸,吩噻嗪,奥氮平,匹莫齐特,抗抑郁药和其他针对各种肿瘤的精神科药物。这些药物已被证明可以在临床前研究中阻止癌细胞增殖并诱导其凋亡,但需要进一步研究以阐明这些精神药物药物的确切机制和靶点。此外,还有许多药物,包括丙戊酸和硫利达嗪,目前正在临床试验中进行评估。这些发现对于产生新的化学治疗药物非常有希望。 尽管有上述发现,但仍有一些关注使用精神病药物治疗癌症化疗。发现使用一些精神药物可以降低患癌症的风险。SSRIs 被认为可以抑制结肠癌细胞的生长,并且可以用于化学预防目的。增加实验和流行病学数据已经证明,精神科药物的抗多巴胺活性可能导致潜在的高催乳素血症。在癌症治疗中使用精神病药物的另一个问题是它们可能的,意外的和频繁的副作用。虽然精神病学的疗程已经在临床上使用数年,它们被已知诱导范围广泛的不利影响。常见的不良反应是锥体外系综合征,体位性低血压,心律失常和代谢综合征。需要进一步调查以评估确切的机制,效率和不利影响。 参考文献 1.R.L.Siegel,K.D.Miller,A.JemalCancer statistics, 2016CA A Cancer J. Clin., 66 (2016), pp. 7-30 2.K.SakChemotherapy and dietary phytochemical agentsChemother.Res.Pract., 2012 (2012), p. 282570 3.A. Mullard2016 FDA drug approvals, Nature reviewsDrug Discov., 16 (2017), pp. 73-76 4.A. Mullard2015 FDA drug approvals, Nature reviewsDrug Discov., 15 (2016), pp. 73-76 5.J.A. DiMasi, R.W. Hansen, H.G. GrabowskiThe price of innovation: new estimates of drug development costsJ. Health Econ., 22 (2003), pp. 151-185 6.L. Amaral, M. Viveiros, J.E. KristiansenNon-Antibiotics": alternative therapy for the management of MDRTB and MRSA in economically disadvantaged countries 7.D. Ordway, M. Viveiros, C. Leandro, R. Bettencourt, J. Almeida, M. Martins, J.E. Kristiansen, J. Molnar, L. AmaralClinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosisAntimicrob. Agents Chemother., 47 (2003), pp. 917-922 8.D. Ordway, M. Viveiros, C. Leandro, M.J. Arroz, L. AmaralIntracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureusInt. J. Antimicrob. Agents, 20 (2002), pp. 34-43 9.M.M. Kristiansen, C. Leandro, D. Ordway, M. Martins, M. Viveiros, T. Pacheco, J.E. Kristiansen, L. AmaralPhenothiazines alter resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) to oxacillin in vitroInt. J. Antimicrob. Agents, 22 (2003), pp. 250-253 10.S.Y.L. Holbrook, A. Garzan, E.K. Dennis, S.K. Shrestha, S. Garneau-Tsodikova Repurposing antipsychotic drugs into antifungal agents: synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections Eur. J. Med. Chem., 139 (2017), pp. 12-21 11.P.B. MortensenThe incidence of cancer in schizophrenic patientsJ. Epidemiol. Community Health, 43 (1989), pp. 43-47 12.P.B. MortensenNeuroleptic medication and reduced risk of prostate cancer in schizophrenic patientsActaPsychiatr. Scand., 85 (1992), pp. 390-393 13.D. Lichtermann, J. Ekelund, E. Pukkala, A. Tanskanen, J. LonnqvistIncidence of cancer among persons with schizophrenia and their relativesArch. Gen. Psychiatr., 58 (2001), pp. 573-578 14.S.O. Dalton, L. Mellemkjaer, L. Thomassen, P.B. Mortensen, C. JohansenRisk for cancer in a cohort of patients hospitalized for schizophrenia in Denmark, 1969-1993 Schizophr. Res., 75 (2005), pp. 315-324 15.G. Spengler, A. Csonka, J. Molnar, L. AmaralThe anticancer activity of the old neuroleptic phenothiazine-type drug thioridazineAnticancer Res., 36 (2016), pp. 5701-5706 16. J.J. Chen, N. Cai, G.Z. Chen, C.C. Jia, D.B. Qiu, C. Du, W. Liu, Y. Yang, Z.J. Long, Q. ZhangThe neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinomaOncotarget, 8 (2017), pp. 17593-17609 17. H. Li, J. Li, X. Yu, H. Zheng, X. Sun, Y. Lu, Y. Zhang, C. Li, X. BiThe incidence rate of cancer in patients with schizophrenia: a meta-analysis of cohort studiesSchizophr. Res. (2017) 18.S.S. Tworoger, S.E. HankinsonProlactin and breast cancer riskCancer Lett., 243 (2006), pp. 160-169 19.E. Sachlos, R.M. Risueno, S. Laronde, Z. Shapovalova, J.H. Lee, J. Russell, M. Malig, J.D. McNicol, A. Fiebig-Comyn, M. Graham, M. Levadoux-Martin, J.B. Lee, A.O. Giacomelli, J.A. Hassell, D. Fischer-Russell, M.R. Trus, R. Foley, B. Leber, A. Xenocostas, E.D. Brown, T.J. Collins, M. BhatiaIdentification of drugs including a dopamine receptor antagonist that selectively target cancer stem cellsCell, 149 (2012), pp. 1284-1297 20. I. Gil-Ad, B. Shtaif, Y. Levkovitz, M. Dayag, E. Zeldich,A.WeizmanCharacterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: clinical relevance and possible application for brain-derived tumorsJ. Mol. Neurosci., 22 (2004), pp. 189-198 21. J. Mu, H. Xu, Y. Yang, W. Huang, J. Xiao, M. Li, Z. Tan, Q. Ding, L. Zhang, J. Lu, X. Wu, Y. LiuThioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancerOncol. Rep., 31 (2014), pp. 2107-2114 22. E.D. Wiklund, V.S. Catts, S.V. Catts, T.F. Ng, N.J. Whitaker, A.J. Brown, L.H. Lutze-MannCytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic targetInt. J. Cancer, 126 (2010), pp. 28-40 23.I. Gil-Ad, A. Zolokov, L. Lomnitski, M. Taler, M. Bar, D. Luria, E. Ram, A. WeizmanEvaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice Int. J. Oncol., 33 (2008), pp. 277-286 24.N.S. Jahchan, J.T. Dudley, P.K. Mazur, N. Flores, D. Yang, A. Palmerton, A.F. Zmoos, D. Vaka, K.Q. Tran, M. Zhou, K. Krasinska, J.W. Riess, J.W. Neal, P. Khatri, K.S. Park, A.J. Butte, J. SageA drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumorsCancer Discov., 3 (2013), pp. 1364-1377 25.D. Willmann, S. Lim, S. Wetzel, E. Metzger, A. Jandausch, W. Wilk, M. Jung, I. Forne, A. Imhof, A. Janzer, J. Kirfel, H. Waldmann, R. Schule, R. BuettnerImpairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitorInt. J. Cancer, 131 (2012), pp. 2704-2709 26.J. Ding, Z.M. Zhang, Y. Xia, G.Q. Liao, Y. Pan, S. Liu, Y. Zhang, Z.S. Yan LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancerBr. J. Cancer, 109 (2013), pp. 994-1003 27. J. Huang, F. Liu, H. Tang, H. Wu, L. Li, R. Wu, J. Zhao, Y. Wu, Z. Liu, J. Chen Tranylcypromine causes neurotoxicity and represses BHC110/LSD1 in human-induced pluripotent stem cell-derived cerebral organoids modelFront. Neurol., 8 (2017), p. 626 28.D.A. Reardon, G. Freeman, C. Wu, E.A. Chiocca, K.W. Wucherpfennig, P.Y. Wen,E.F. Fritsch, W.T.Curry Jr.,J.H.Sampson,G. DranoffImmunotherapy advances for glioblastomaNeuroOncol., 16 (2014), pp. 1441-1458 29. J.A. Driver, G. Logroscino, J.E.Buring, J.M. Gaziano, T. KurthA prospective cohort study of cancer incidence following the diagnosis of Parkinson's diseaseCancer Epidemiol. Biomark. Prev., 16 (2007), pp. 1260-1265 30. J. Huang, C. Zeng, J. Xiao, D. Zhao, H. Tang, H. Wu, J. ChenAssociation between depression and brain tumor: a systematic review and meta-analysisOncotarget, 8 (55) (2017)

2019-10-08

“天使药丸”阿司匹林的前世今生

拜耳公司是一家全球性药企,遗臭万年的海洛因曾诞生于此,然而“魔鬼的摇篮”里还诞生了被誉为“天使药丸”的阿司匹林,它名扬世界超过百年,与青霉素、安定并称“世界医学史三大经典药物”。看似平淡无奇的小药片,背后却是波澜跌宕的传奇历史,神奇的故事背后是化学对人类改造和探索药物的巨大贡献。 一、引言 1863年8月,商人富黎德里希·拜耳(Friedrich Bayer)与颜料大师约翰·富黎德里希·威斯考特(Johann FriedrichWeskott)在德国创建了一家颜料公司,后来经过多年逐步发展成为如今的制药巨头拜耳公司。拜耳公司以创新发明著称,许多重大的发明,例如阿司匹林、海洛因、美沙酮、环丙沙星、毒鼠强等都来自拜耳实验室,这些发明有的为人类的发展进步做出了不可磨灭的贡献,有的却也给人类带来了巨大的苦难。拜耳公司拥有众多发明和专利,阿司匹林的诞生为其赢得了巨大收益和良好声誉。西药合成学和药理学的飞速发展导致新型药物百花齐放、各显神通,但阿司匹林在更新换代的大潮流中始终屹立不倒,并且开拓出新的用途,真正成为经久不衰的神奇分子。 图1拜耳公司创始人富黎德里希·拜耳及公司标志 二、阿司匹林诞生记 阿司匹林的故事要追溯到3500多年之前,当时古埃及最早的医学文献《Ebers Papyrus》(译作:埃伯斯纸草纪事)就曾记载柳树可用于消炎镇痛。公元前400年左右,“医学之父”希波克拉底利用柳树皮提取物治疗疼痛、发烧及妇女分娩。但是随着历史变迁,柳树作为药物使用似乎失传了,直到1763年英国教士EdwardStone重新发现了柳树皮的药用价值,但当时人们对于有效成分是无法得知的。 19世纪早期,化学技术已经发展到实验室阶段,已经可以对部分药物的有效成分进行分离鉴定。1828年,慕尼黑大学药学教授JohannBuchner费力地从柳树皮中提取出相对纯净的黄色物质,并将其命名为水杨苷(Salicin)。十年之后,意大利化学家Raffaele Piria成功地将水杨苷水解得到了葡萄糖和水杨醇组分,随后他还成功将后者氧化为羧酸,也就是我们熟知的水杨酸(Salicylic acid),这是阿司匹林研究中巨大的突破。1852年,法国化学家CharlesGerhardt第一次将乙酰基引入水杨酸分子的羟基上,成为历史上第一个合成乙酰水杨酸(阿司匹林)的人,但由于产物的不稳定性他放弃了后续研究。 图2阿司匹林的发现历程 在阿司匹林漫长的发现史中,还有位名叫赫尔曼·科尔贝(Hermann Kolbe)的科学家不得不提,他最早使用“合成”(synthesis)这个词表示现代意义上的有机合成,他在1859年借助苯酚钠和二氧化碳在高温加压条件下的羧基化反应提出了用于合成水杨酸的科尔贝-施密特反应,可广泛用于水杨酸的生产。水杨酸一经诞生并不是我们想象的那样立即成为灵丹妙药,主要是它的副作用较多,例如难闻的气味、对消化黏膜造成刺激、呕吐,某些患者甚至会出现消化道溃疡。当时,年轻的拜耳公司试图对水杨酸的结构进行修饰以图减小对身体的刺激作用,尽管获得了不少相关专利但真正的突破出现在1897年,当时拜耳实验室年轻的有机化学家费利克斯·霍夫曼(Felix Hoffmann)合成了乙酰水杨酸并且能够结晶出纯净的产物作为医用。霍夫曼修饰后的产物解决了水杨酸的刺激性,两年后拜耳公司通过了乙酰水杨酸对疼痛、炎症及发热的临床疗效测试并将其注册为沿用至今的商品名“阿司匹林”,很快成为畅销药物。 图3赫尔曼·科尔贝(左)和费利克斯·霍夫曼(右) 三、扑朔迷离的归属权之争 关于霍夫曼发明阿司匹林,流传较广的还有一个比较感人的故事。据说,霍夫曼的父亲患有风湿性关节炎,需长期服用水杨酸进行消炎止痛,但长期服药造成他父亲严重的胃肠不适,充满孝心的霍夫曼决心对水杨酸的结构进行改造,“覆盖”掉了分子中的酸性部分,这才合成了阿司匹林。然而,事实似乎并不像流传的故事那么简单。2000年底,英国医学家、史学家瓦尔特·斯尼德(Walter Sneader)提出当时拜耳公司制药组负责人亚瑟·艾兴格林(Arthur Eichengrün)才是阿司匹林的主要发明人。 图4亚瑟·艾兴格林 瓦尔特·斯尼德几经周折获得拜耳公司的特许,查阅了实验室所有档案,最终确定霍夫曼合成阿司匹林是在犹太科学家亚瑟·艾兴格林的指导下完成的,更准确说是他完全采用了艾兴格林提出的路线才获得成功的。当霍夫曼为减轻父亲的痛苦发明阿司匹林的传说流行起来时,纳粹已经在德国掌权,极端的纳粹党根本不愿承认阿司匹林是由犹太人发明的这一事实,于是将错就错把桂冠戴到了霍夫曼头上。1949年前后,写完关于阿司匹林的回忆后不就艾兴格林就去世了,阿司匹林的归属权之争也或多或少被打上了纳粹和种族歧视的烙印。但事实是否真就如此呢,恐怕我们还不能给出肯定的结论。 四、阿司匹林的合成 阿司匹林的合成路线并不复杂,可归类为酯化反应,即水杨酸的酚羟基和乙酸酐作用失去一分子乙酸后形成产物酯,反应通常需要少量酸作为催化剂,例如硫酸和磷酸。反应机理大致可描述为:首先水杨酸的酚羟基进攻被酸活化后的乙酸酐,随后在酸根离子作用下脱掉质子形成半缩酮结构,最后在酸催化剂的帮助下脱去一分子副产物乙酸并完成质子转移过程得到乙酰化的水杨酸。值得一提的是,含高浓度阿司匹林的制剂常常剧有醋味,这是因为阿司匹林会在潮湿的环境下发生水解,分解生成水杨酸和乙酸。 图5阿司匹林的合成及反应机理 五、“老树生新枝” 阿司匹林诞生后很快风靡全球,然而到了1971年,在解热镇痛类新药层出不穷之时,阿司匹林已经很难一家独大,这时人们却发现了它的新作用,阿司匹林迎来了新的“春天”。随着对阿司匹林研究的深入,近年来人们发现了它的一些新应用,例如癌症预防、糖尿病防治、抑制血小板聚集、缓解白内障等,但这些新应用尚需临床进一步研究才能真正得以推广。 据统计,世界上几乎70%以上的人都服用过阿司匹林,然而“是药三分毒”,阿司匹林在实际使用过程中仍有许多需要注意的事项。对于过敏体质的人群,服用阿司匹林后可能会出现皮疹、血管神经性水肿、哮喘或其他过敏性反应;尽管阿司匹林较水杨酸对胃肠道的刺激性小很多,但是长期服用仍然可能导致胃粘膜糜烂、出血和溃疡,因此阿司匹林的服用时间最好在饭后或与抗酸剂同时服用,本身就有溃疡的患者更应该慎用或者不用。 六、结束语 诚如上海有机所丁奎岭院士所说,合成化学是新药发现的主要动力和药物制造工业技术进步的源头,在未来很长一段时间内,化学合成药物仍然会是当今世界各大制药公司新药研究的主题。从最初治疗头疼脑热逐渐发展成如今具有多种吸引人的潜在医用价值,阿司匹林的研究还将继续,似乎这个小小的“传奇”分子仍然没有“吐露”全部秘密,未来还会不会给我们带来新的惊喜呢?相信大家和我一样满心期待。 参考资料 [1] 郭宗儒. 经久不衰的阿司匹林. 药学学报, 2015,50(4): 506-508. [2] Rinsema, ThijsJ. "One hundred years of aspirin." Medical History, 1999,43(4): 502-507. [3] Desborough, Michael JR, andDavid M. Keeling. "The aspirin story–from willow to wonder drug." British Journal of Haematology, 2017, 177(5): 674-683. [4] 宋祖益. 近年来阿司匹林被发现的新作用及副作用. 中国实用医药, 2013,30: 161-162. [5] 汪芳. 纵览阿司匹林发展历史. 中国全科医学, 2016,19(26): 3129-3135.

2019-10-08

化学领域十大新方向,或将改变我们的世界

2019年是化学领域非常特殊的一年。2019年是两个重要的纪念日:国际纯粹与应用化学联盟(IUPAC)成立100周年,以及迪米特里·门捷列夫首次发表元素周期表150周年。IUPAC是一个全球性的组织,在众多的组织中,它为化学研究、教育和贸易建立了一种共同的语言。在成立100周年纪念日上,IUPAC首次公布了化学领域十大新兴技术名单:纳米农药、对映选择性有机催化、固态电池、流动化学、反应挤出、用于集水的MOFs和多孔材料、选择性酶的定向进化、从塑料到单体、自由基聚合反应的可逆失活和3D生物打印。 1、纳米农药 世界人口不断增长。一些预测表明,到2050年,我们将有将近100亿人口。为了保护作物可持续发展,需要大量增加农业产量,最大限度地减少土地利用方面的环境影响,减少所需的水量,并减少人口数量。农药,如化肥或农药污染。不出所料,纳米技术正在吸引制药和健康行业以外的相当多的关注。量身定制的纳米输送系统也可以成为农民的一个很好的工具,因为它最终将使他们能够解决传统农药的主要问题,如环境污染,生物累积和抗虫害的大幅增加。在大多数情况下,疗效的提高非常有限。然而,在某些情况下,研究人员观察到在实验室条件下改进了一个数量级。我们仍然需要在田间条件下对纳米杀虫剂的功效进行适当的评估。 这就是为什么一些公司仍在调查他们的潜力,证明这项技术仍有希望。加拿大Vive Crop可能是最好的例子,销售的产品比非纳米商业替代品具有更好的吸收性和更少的环境影响。此外,该公司最近获得了美国环境保护局的批准,将各种纳米包封的杀虫剂和杀菌剂商业化。纳米技术可能不是成功的新的,更具可持续性的农业的唯一成分,但它肯定会导致更复杂的农用化学品,对环境和人类健康的影响更小。 2、对映选择性有机催化 化学家一直受到大自然的启发。几年前,研究人员梦想有一种新型催化剂,与大多数天然酶一样,不需要使用昂贵的金属。“有机催化”诞生于20世纪90年代后期,从那以后它一直没有停止过。根据该领域的领先专家之一Paolo Melchiorre的说法,有机催化是成功的,因为“它非常民主,每个人都可以在不需要昂贵的试剂或手套箱的情况下使用它,这使得许多年轻的研究人员能够开始他们独立的职业生涯,并迅速组建了一个国际专家社区,成为没有金属的催化思想的伟大孵化器,“他解释说。 最初,一些化学家批评有机催化不像它声称的那样绿色 - 它需要高催化剂负荷,而且,反应后很难回收催化剂,这似乎违背了催化的定义。然而,Melchiorre指出研究人员如何克服大多数这些问题。他说有机催化的最初焦点是“开发新方法而不是降低催化剂负荷”。 然而,由于化学家了解降低催化剂用量可能产生的工业影响,他们只使用百万分之几的有机催化剂来制定手性碳 - 碳键的方法。“这仍然无法与金属相媲美,但成本要低得多,”他补充道。 化学家们还开发了更好地回收催化剂的解决方案--Ben List将它们固定在像尼龙这样的固体基质上,这只是众多可能的答案之一。Melchiorre强调了有机催化如何种植化学领域并最终在其他领域发挥作用,尤其是光催化氧化催化,它允许新型转化:“[David] MacMillan创造了两个领域之间的联系。光活化使得醛类与烯胺的烷基化反应成为可能。这种反应不能用经典的有机催化方法完成。“许多其他领域已经从有机催化中出现,现在工业已经扩大了不对称有机催化方案,以合成精细化学品和药物。 3、固态电池 19 世纪已经设想了固态电池世纪由先驱化学家迈克尔法拉第。然而,他们的发展直到最近才成为现实。现在,来自博世,戴森,丰田和英特尔等多个行业的重要行业正在投资数十亿美元。现在无处不在的锂离子电池的共同发明者John Goodenough最近公布了一种使用玻璃作为电解质的电池,证明固态电池比以往更接近市场。与为我们的智能手机,平板电脑和笔记本电脑供电的锂离子电池相比,固态电池更轻,允许更高的能量存储,并且在高温下表现良好。此外,与锂离子技术中使用的电解质不同,固态电解质不易燃,可能避免自发火灾和爆炸,就像几年前三星Galaxy Note 7推出的火焰一样。然而,新技术仍然非常昂贵。 对于许多其他应用,聚合物可能是最好和最经济的解决方案。法国运输公司Bolloré已经在制造和商业化基于聚合物的固态电池,它们主要用于网络连接传感器。 根据聚合物专家Tanja Junkers的说法,“电荷输送聚合物确实令人着迷 - 我们刚刚看到了未来可能发生的事情的开始。”仍有许多研究要做,特别是因为固态电池组件如此紧密地结合在一起,以至于理解每个组件的行为都非常复杂。 学术界和工业研究人员正在密切合作,开发出更好的非破坏性操作技术 - 电子显微镜和核磁共振 - 以了解固态电池的性能。对于大多数用途,该技术仍需要几年的开发。 4、流动化学 化学是实现联合国可持续发展目标(SDGs)的关键,这一目标是到2030年为所有人实现更好,更可持续的未来的蓝图。其中,流动化学,其中反应在不断流动的流中进行而不是批量生产,对于解决SDG12:负责任的消费和生产尤其重要。流动化学过程最终将处理有害物质和提高生产率的风险降至最低,同时防止危害并降低对环境的影响。虽然有些人认为流动化学处于非常早期的小规模实验室阶段,但高效的工业应用越来越普遍。 早在2015年,麻省理工学院的化学家就证明了流动化学的潜力,可以创造出经典批次技术难以实现的定制聚合物。据该领域的专家介绍,流程更快,更简单,更可靠,这与SDG目标非常一致。 最近的实例甚至已经显示出流动化学可以承受有害试剂如有机锂化合物的潜力。默克化学家实现了100千克规模的verubecestat前体合成,这是一种治疗阿尔茨海默病的III期候选药物。最近的其他实例包括环丙沙星(一种必需的抗生素)的流动合成,以及由辉瑞公司开发的自动流动系统,该系统能够每天分析多达1500个反应条件,加速了新药和现有药物的最佳合成途径的发现。 5、反应挤出 随着流动化学的发生,反应性挤出成为一种允许化学反应完全无溶剂化的技术。消除潜在有毒溶剂使该过程对环境友好。然而,它产生了许多工程挑战,因为它需要对现有的工业流程进行全面的重新设计。尽管挤出工艺已被聚合物和材料专家广泛使用和研究,但现在只有其他化学家开始研究它们在制备有机化合物方面的可能性。经典的挤出方法涉及在球磨机中研磨试剂,但使用螺杆的更先进的挤出技术甚至可以允许这些无溶剂反应在流动设置中操作。再来一次,缺点在于有效地调整系统并扩展它们。 在他们的实验室中,化学家们使用球磨机来制备几种有吸引力的产品 - 氨基酸,腙,硝酮和肽 - 并且已经实现了一些非常经典的有机反应 - 铃木偶联,点击化学 - 但是在聚合物之外的反应挤出条件下的实例仍然存在相当难以捉摸。 然而,稀少的例外显示出巨大的希望。生物技术公司Amgen报道了优化的共晶合成,可用于治疗慢性疼痛,这也是机械化学合成的第一个例子,可扩大到数百克。此外,英国的科学家们已经使用反应性挤出来有效地制备深低共熔溶剂 - 一类可能成为新一代绿色,非易燃溶剂的离子液体。前面的两个例子都涉及分子内相互作用的形成,但不是新共价键的产生。然而,化学家们最近报道了金属有机骨架(MOFs)的形成和螺杆挤出的离散金属配合物,为更清洁,更可持续的无溶剂化学开辟了新的可能性。 6、用于集水的MOF和多孔材料 据联合国(UN)称,水资源短缺影响了全球40%以上的人口,并且预计会增加。最重要的是,十分之三的人无法获得安全管理的饮用水服务。化学可以为这个被确定为SDG 6的问题带来解决方案,“改变我们的世界”使用多孔材料,特别是金属有机框架(MOF)。像MOF这样的多孔材料具有海绵状化学结构,具有微观空间,可以选择性地捕获分子,从气体 - 氢气,甲烷,二氧化碳,水 - 到更复杂的物质,如药物和酶。虽然一些研究人员专注于MOF在药物输送和气体净化中的应用,但Omar Yaghi偶然发现了它们从大气中捕获水的巨大潜力。 “当我们研究将燃烧后气体吸收到MOF中时,我们注意到一些MOF与水分子发生了独特的相互作用,”Yaghi解释道。然后,他们想知道是否有相同的材料“可以”用于在干旱气候中从大气中捕获水分,然后很容易被释放用于收集。“这种技术是独一无二的,因为它可以从干燥的沙漠空气中获取可饮用量的纯净水,除了自然阳光之外不需要能量,”Yaghi说。只需一公斤的MOF就能在湿度低至20%的情况下每天收获2.8升水。 在开发更高容量,可能更便宜的集水材料时,Yaghi“已经与公司合作,在工业规模上测试他们的MOF水收割机。”还有其他具有类似能力的多孔材料,如硅基和无机多孔固体,以及最近报道的模拟仙人掌刺结构的仿生多孔表面只需一公斤的MOF就能在湿度低至20%的情况下每天收获2.8升水。Yaghi认为,他们中的大多数人在从低湿度空气中吸收水的能力不如MOF。然而,进一步的研究当然可以探索找到最佳解决方案的所有可能性,不仅用于收获水,而且用于净化水,确保实现联合国最重要的目标之一 - 实现充分和公平的卫生。 7、选择性酶的定向进化 酶的定向进化获得了2018年诺贝尔化学奖。通过定向进化产生的酶用于制造从生物燃料到药物的所有物质。根据诺贝尔委员会的说法,像2018年获奖者弗朗西斯·H·阿诺德这样的化学家“已经控制了进化,并将其用于为人类带来最大利益的目的。” “定向进化需要对数万种变体进行实验测试,但[最终]提供高活性酶,”SílviaOsuna解释说,他通过先进的计算方法研究酶。她认为,与实验中人工进化的天然酶和酶相比,通过合理设计产生的最活跃的酶“仍然表现得相当差。”根据Osuna的说法,关于定向进化的最有趣的事实是“突变[是]远离酶活性位点对酶催化活性产生巨大影响。“ 只有通过分析人工进化的酶,我们才能学会这一点。她通过计算研究酶的领域可能是识别类似趋势的关键,从而更好地理解定向进化。“计算是众多工具之一,加上蛋白质工程的进步,基因合成,序列分析和生物信息学,这将有助于我们化学家制作更集中的[酶]库,”她总结道。 定向进化的局限性尚待发现。在她最近的论文中,阿诺德使用定向进化“破解”植物酶细胞色素P450。现在,它们可以很容易地将碳 - 氢键转化为更复杂的不对称碳 - 碳键。 8、从塑料到单体 “循环经济无疑是目标,”Tanja Junkers说。化学家应该再次受到大自然的启发。在那里,“一切都被重复使用,我们应该对我们的合成材料做同样的事情。”这种策略将一举两得,“它将解决长期可回收性的问题,并且[需要]找到合适的主要[聚合物]构件的来源。“ 一些聚合物,如聚乳酸(PLA),只需使用热量就可以很容易地再循环到它们的单体中。其他如聚对苯二甲酸乙二醇酯(PET)可以类似地分解成它们最基本的单元。首先,用乙二醇处理聚合物,乙二醇将长聚合物链断裂成低聚物。这些较小的碎片在较低温度下熔化,因此可以过滤以除去任何杂质。然后,一旦材料被净化,它就完全分解成单体,然后通过蒸馏再次纯化。 除了经典化学之外,就像阿诺德先前提到的酶促转化方法一样,一些细菌已经进化,这样它们也可以将PET分解成碎片。有时塑料是碳的唯一来源,如果你想生存,你需要适应。至少有一种Nocardia具有可破坏PET中酯键的酯酶,最近,日本研究人员发现了Ideonella sakaiensis,这种细菌可以在六周内分解PET塑料薄膜,这归功于两种不同的酶。然而,回收是昂贵的,“塑料世界的利润率很低,每一分钱都很重要,”容克斯说。化学家们正在寻找更便宜的循环经济选择。此外,随着石油变得不那么丰富,塑料的价格会慢慢上涨。但是,除此之外,我们必须提高认识,清洁塑料可能更昂贵,但值得。“社会必须愿意为更可持续的选择支付更高的价格,”容克斯总结道。 9、自由基聚合的可逆失活 “自由基聚合反应失活(RDRP)是二十多年前发明的,它彻底改变了聚合物世界,”Junkers解释道。“这些方法都依赖于对其他几乎无法控制的链式反应实施控制的机制,使我们能够设计出与自然界正在接近的精确度的聚合物,”她说。RDRP聚合物已在各种领域中得到应用:建筑,印刷,能源,汽车,航空航天和生物医学设备只是其中的一些例子。“大多数时候,我们使用这些聚合物却没有意识到这一点,”容克斯说。RDRP已成为工业化学家非常强大和有用的工具。 但仍有很大的发展空间,特别是寻找更环保的聚合解决方案。现在有许多方法只使用光来控制RDRP过程,即使不需要使用金属。近年来,化学家们还开发了RDRP方法,这些方法可用于流动系统,这将使它们朝着更加绿色的聚合物和塑料合成方向发展。 最后,化学家们还掌握了在水性介质中起作用的聚合过程,避免使用挥发性或有害溶剂。最近的进展使他们能够在几分钟内在水中获得超高分子量聚合物,同时保持对聚合物支化的精细控制。这些过程中的一些可以使用非常低能量的光源,在某些情况下甚至只是阳光。尽管是一种成熟的技术,我们可以肯定RDRP方法将继续创新,产生更广泛的商业成功。 10、三维生物打印 生物打印是当今最有前途的技术之一。使用由活细胞以及生物材料和生长因子制成的3D打印机和墨水,化学家和生物学家已经设法制造出与其天然版本几乎无法区分的人造组织和器官。3D生物打印可以彻底改变诊断和治疗,因为人工组织和器官可以很容易地用于药物筛选和毒理学研究。这项技术甚至可以为不需要捐赠者的理想移植创造组织和器官。目前,科学家们已经可以对管状组织(心脏,尿道,血管),粘性器官(胰腺)和固体系统(骨骼)进行3D打印。最近,剑桥研究人员甚至设法对视网膜进行三维打印,仔细沉积不同类型的活细胞层,以产生一种在结构上类似于原生眼组织的构造。 化学在这个非常复杂的过程的所有步骤中起着核心作用。首先,需要“扫描”器官和组织以便具有计算模型。这是通过使用诸如计算机断层扫描(CT)扫描和磁共振成像(MRI)的成像技术来完成的,这两者通常都需要化学造影剂,例如钆染料。然后,生物打印本身需要无数的化学物质来稳定生物墨水,触发细胞的组装,或充当印刷组织的支架。 最后,3D生物打印的对象需要随着时间的推移保持其结构和形式,这是一个需要物理和化学刺激的过程。而且,就像在任何移植或手术中一样,身体总是存在拒绝印刷组织的风险。了解细胞 - 细胞识别的化学反应,主要是由以糖脂和糖蛋白形式包裹膜的糖来控制,是减少排斥反应的关键。化学作为高度复杂的3D生物打印背后的所有交叉学科的中心,将是这种边缘技术的进一步发展的关键,据一些专家说,甚至可以建立比现有生物学更好的新器官。 凭借“化学十大新兴技术”计划,IUPAC不仅庆祝其过去100年,而且还展望了化学的未来。这些进步中的每一项都具有确保我们社会福祉和地球可持续性的巨大潜力。因此,IUPAC将继续在化学国际的未来版本中展示这些新兴的化学,材料和工程技术。我们的目标是促进和突出化学在日常生活中无处不在的贡献,并激励新一代年轻科学家无畏地接受我们所面临的挑战,使他们能够通过研究,创业和创造力找到解决方案。 化学创新将推动实现可持续发展目标的变革,并最终实现IUPAC的使命 - 应用和传播化学知识,为人类和世界带来最大利益。 相关阅读 1、一文读懂国外化工产业转型升级经验及启示! 2、石油和化工人!看这12份70年成就汇报 3、厉害了我的石油化工!细数建国70年各省市化工发展史! 4、一个国家到底能不能没有化工企业?

2019-10-08

基因毒性杂质妖风再起,FDA紧急更新检测方法

近期,基因毒性杂质风波再起,这一次的主角是雷尼替丁,涉事药企为诺华旗下山德士以及Apotex等。雷尼替丁中发现的基因毒性杂质为N-亚硝基二甲胺(NDMA),这个杂质并不是第一次出现,前段时间沸沸扬扬的沙坦类药物也涉及到该基因毒性杂质。 首先,FDA声明提醒患者和医护人员,在雷尼替丁中发现该杂质;紧接,数家药品生产企业(包括品牌药和仿制药),启动召回程序,FDA提示患者和医护人员进行药品召回;最近,FDA更新了雷尼替丁中NDMA检测方法(文末附有新的检测方法) 2019年9月13日,FDA发表声明,提醒患者和医护人员在雷尼替丁中发现NDMA。 美国FDA已获悉,某些雷尼替丁药物,包括一些通常被称为品牌药物Zantac的产品,都含有少量称为N-亚硝基二甲胺(NDMA)的亚硝胺杂质。根据实验室测试的结果,NDMA被归类为可能的人类致癌物(一种可能导致癌症的物质)。NDMA是一种已知的环境污染物,存在于水和食物(包括肉,奶制品和蔬菜)中。 自去年以来,FDA一直在研究血压和心力衰竭药物中的NDMA和其他亚硝胺杂质,称为血管紧张素II受体阻滞剂(ARB)。就ARB而言,由于发现亚硝胺水平不可接受,FDA已建议进行多次召回。 当代理商发现问题时,它会迅速采取适当行动以保护患者。FDA正在评估雷尼替丁中低水平的NDMA是否对患者构成风险。FDA将在可用时发布该信息。 患者应该能够相信自己的药物是尽可能安全的,并且服用这些药物所带来的好处超过了对健康的任何风险。尽管NDMA可能会造成大量危害,但FDA从初步测试中发现的雷尼替丁含量几乎不超过您在普通食品中可能发现的含量。 雷尼替丁是一种非处方药(OTC)和处方药。雷尼替丁是一种H2(组胺2)阻滞剂,可减少由胃产生的酸量。非处方雷尼替丁被批准用于预防和缓解因食酸和胃酸而引起的烧心。雷尼替丁处方被批准用于多种适应症,包括治疗和预防胃和肠溃疡以及治疗胃食管反流疾病。 该机构正在与国际监管机构和行业合作伙伴合作,确定雷尼替丁中这种杂质的来源。该机构正在检查雷尼替丁中NDMA的水平,并评估可能给患者带来的风险。FDA将根据正在进行的调查结果采取适当措施。该代理将在可用时提供更多信息。 FDA目前不要求个人停止服用雷尼替丁。但是,希望停止使用雷尼替丁处方的患者应与医疗保健专业人员讨论其他治疗方案。服用OTC雷尼替丁的人可以考虑使用经批准可用于其病情的其他OTC药物。市场上有多种药物被批准与雷尼替丁具有相同或相似的用途。 消费者和医疗保健专业人员应将雷尼替丁的任何不良反应报告给FDA的MedWatch计划,以帮助该机构更好地了解问题的范围: 2019年9月24日,FDA官网发布消息,因发现含有基因毒性杂质NDMA,Sandoz山德士主动召回14个批次的雷尼替丁胶囊。 2019年9月25日,另外一家知名仿制药企业Apotex,也因NDMA启动了召回,涉及到2个剂量(75mg以及150mg)的多种包装规格的雷尼替丁片。 关联消息: 除了雷尼替丁涉及到NDMA杂质外,在2018年,Major、Prinston(华海药业美国子公司)、以及Camber也先后因为该杂质召回过缬沙坦片剂。 (FDA发布的更新检测方法)

2019-10-08

从一条尿素袋裤子到辉煌的中国石油工业

70年代末,在中国乡村,出现了一种奇怪的黑色裤子—— 它结实,耐磨,久穿不坏,就是隐隐约约可以看到上面印有字。有的裤子经过长期洗涤后,字迹更明晰:什么 “25kg”“日本制造”,看得一清二楚。 裤子上的字样隐约可见 原来,当时的中国百废待兴,挣扎在温饱线上。为了解决吃饭难关,中国从日本进口了大批尿素做化肥。当时中国城里人,一人一年只有少量布票,还不够做一条裤子;乡村农民更是衣衫褴褛,困难得没有裤子穿。所以,尿素用完后,尼龙袋染一染,正好做一条裤子,可谓“变废为宝”。但是当时的印染技术不过关,经过多次洗涤之后,上面的字就会原形毕露。 当时国内衣服的颜色基本只有灰、蓝、黑三种,穿着千篇一律,外国媒体称之为“蓝蚂蚁”或“灰蚂蚁”。 1973年的上海纺织厂女工 短短的几十年,中国的服饰从单一到多样,靠的是什么呢? 你可能想不到,是石油工业! 作为布匹的主要来源,棉花是单亩出产率最低的经济作物之一;但一亩高产棉田在现代农业的科学管理前提下,最高也仅有600斤。土地有限,是种粮食?还是种棉花?如果要满足全中国人的穿衣问题,那么很多人就要饿肚子了。在没有化纤的日子里,棉布的确难以独力承受几亿人民穿衣之重。 如何走出两难困境?办法只有一个——无中生有!归根到底,粮棉争地矛盾的最终解决,是靠化学纤维。 化纤在20世纪初叶被发明之时,完全出于对蚕吐丝的模仿;当人们发现以石油等为原料的聚酯类高分子化合物所具有的粘性可以用来抽丝,人类就在很大程度上得到了解放。 化纤,引领了一个时代中国的穿衣时尚。 在20世纪80年代,如果能收到一件的确良衣服,回头率那是相当高!这就是芳烃技术。 芳烃,是化学工业的重要根基,广泛用于三大合成材料以及医药、国防、农药、建材等领域。对二甲苯是用量最大的芳烃品种之一,与人们的生活息息相关,它是合成应用最为广泛的聚酯纤维的初始原料,通过聚酯切片、抽丝、纺织,再做成衣服或其他日用。 20世纪90年代,仪征化纤一、二期工程全面建成投产,形成年产50万吨化纤和原料的生产能力,占中国合成纤维产量的三分之一,可以为中国每人每年提供一套“的确良”新衣,极大地缓解了中国百姓穿衣难的问题。 仪征化纤一、二期工程建成投产△ 但是,新的问题随之而来——整个聚酯产业链的核心是解决老百姓的穿衣问题,而聚酯产业的重要源头芳烃的生产技术一直依赖进口。 2013年12月15日,海南炼化芳烃联合装置生产出一级对二甲苯产品,中国石化成为全球第3家拥有整套芳烃生产专利技术的公司。 中国石化“高效环保芳烃成套技术开发及应用”荣获2015年度国家科学技术进步特等奖。 穿衣问题的解决,是70年来中国石油工业发展壮大的缩影。没有“工业血液”的石油,今天的一切建设成就,都难以想象。新中国成立70周年之际,今天和您一起回顾,中国石油工业70年的光辉历程! 新中国成立前,我国石油工业的基础十分薄弱,仅有甘肃玉门老君庙、新疆独山子、陕西延长等几个小规模油田,年产不足12万吨,国内消费的石油基本上依靠进口。那时候,西方国家一些专业学者都认为,中国是贫油国家。 1938年玉门老君庙油田 新中国成立后,先后开发建设了新疆克拉玛依油田和青海冷湖油田及四川油、气田,扩大了玉门油田,初步形成了玉门、新疆、青海、四川4个石油、天然气生产基地,在东北、华北、西南等几个大盆地进行的区域勘探取得新的进展。 甘肃玉门油田 1959年,全国原油产量达到373万吨,主要石油产品自给率达到40.6%,但远远不能满足国家经济建设的需要。 60年代初,我国面临着来自国内外的严重困难和巨大压力,大庆石油会战在这个时期打响。经过3年多的奋战,到1963年,我国高速度、高水平地探明和建设了大庆油田,形成了年产600万吨原油的生产能力。 1963年12月,周恩来总理在第二届全国人民代表大会第四次会议上庄严宣布:“我国需要的石油,现在可以基本自给了。” 1964年1月21日,石油工业部党组向中共中央报告,提出要在天津以南、东营以北的沿海地带,组织华北石油会战。到1965年,在山东建成的胜利油田、在天津建成的大港油田都开始出油。华北石油会战打开了渤海湾地区的勘探局面,在中国东部又开辟了一个新的石油生产基地。 20世纪50年代末,我国人造地球卫星筹备工作遇到重大技术难题:缺乏专用润滑油。与工业油、车用油等其他油品相比,航天用油的生产工艺非常复杂,对润滑油的稳定性、洁净及耐高低温等性能要求很高。为攻克这一难题,中国石化润滑油公司的前身——原石油工业部北京试验厂(代号621厂)正式组建,成功生产出合格的特种润滑油交付使用,这标志着中国打破国外技术垄断,成为少数几个掌握航天工业、核工业用油技术的国家之一。 长城润滑油 1970年,新中国第一颗人造卫星——东方红一号成功上天,卫星配套润滑材料提供全方面润滑防护,确保了卫星能够适应太空恶劣环境和正常运转。 1978年12月,中共十一届三中全会作出了把全党工作重点转移到社会主义现代化建设上来的战略决策,各条战线都出现了前所未有的大好形势,石油工业进入了新的发展时期。 1983年,中共中央发出文件,决定成立中国石油化工总公司(中石化)。中石化接连开发出新中国第一个古生界海相亿吨级大油田——塔河油田,第一座百万吨乙烯生产基地——茂名石化,中国最大的页岩气田——涪陵页岩气田,中国最大的天然气储气库——文23储气库等等,它们不断突破记录。 不止如此,由于地热开发与石油勘探开发原理相同,为助力能源转型,2019年,中国石化地热业务辐射河北、陕西、山西等13个省区市,供暖能力达5000万平方米。 新中国第一座“地热城”——雄县 人民有信仰,民族有希望,国家“油”力量!期待祖国石油工业的新辉煌! 相关阅读 1、石油和化工人!看这12份70年成就汇报 2、厉害了我的石油化工!细数建国70年各省市化工发展史! 3、一个国家到底能不能没有化工企业? 4、 一文读懂国外化工产业转型升级经验及启示!

2019-10-08

2019年诺贝尔生理学或医学奖揭晓:细胞如何感知和适应氧气供给

瑞典当地时间10月7日,在瑞典首都斯德哥尔摩卡罗琳斯卡医学院,诺贝尔奖委员会总秘书长托马斯·佩尔曼宣布,2019年诺贝尔生理学或医学奖授予威廉·乔治·凯林,彼得·拉特克利夫,格雷格·塞门扎,为表彰他们发现细胞如何感知和适应氧气供给的成就。他们将分享900万瑞典克朗奖金(约合653万人民币)。2015年,中国科学家屠呦呦因在疟疾治疗研究中的突出贡献荣获该奖项。 北京时间10月7日下午5点30分,2019年诺贝尔生理学或医学奖公布,哈佛医学院达纳-法伯癌症研究所的威廉·乔治·凯林( William G. Kaelin, Jr.),牛津大学和弗朗西斯·克里克研究所的彼得·拉特克利夫( Peter J. Ratcliffe)以及美国约翰霍普金斯大学医学院的格雷格·塞门扎(Gregg L. Semenza)获此殊荣。这三位科学家曾共同获2016年拉斯克基础医学奖。 动物需要氧气才能将食物转化为有用的能量。几个世纪以来,人们已经了解了氧的基本重要性,但细胞如何适应氧水平的变化一直是未知的。今年的诺贝尔奖获奖工作揭示了细胞适应氧气供应变化的分子机制。 今年诺贝尔奖获得者的开创性发现,解释了生命中最重要的适应过程的机制。他们为我们了解氧水平如何影响细胞代谢和生理功能奠定了基础。他们的发现也为开发抑制或激活氧调节机制的新药,抗击贫血、癌症和许多其他疾病的新策略铺平了道路。 威廉·乔治·凯林( William G. Kaelin, Jr.),生于纽约,美国癌症学家、哈佛医学院教授。Kaelin实验室研究了肿瘤抑制蛋白的功能,包括视网膜母细胞瘤蛋白(pRB),von Hippel-Lindau蛋白(pVHL)和p53肿瘤抑制蛋白p73的同源物。凯林的研究探索了为什么抑癌基因出现突变后将会导致癌症。他的研究发现被称作VHL的抑癌基因能够调节身体对氧浓度的反应VHL能够改变下游蛋白的表达量,来调控身体产生红细胞、生产新的血管来应对低氧浓度。Kaelin还发现低氧诱导因子(HIF)是控制这一系列过程的关键蛋白,HIF对氧浓度高度敏感。凯林教授一直致力于缺氧对肿瘤的影响,他在视网膜母细胞瘤、von Hippel-Lindau(VHL)和P53肿瘤抑制因子方面的研究提示纠正单个基因缺陷可产生一定的治疗效果。其中对VHL蛋白的研究在VEGF抑制剂成功治疗肾癌方面功不可没。其研究组还证实在乳腺癌中谷氨酸旁分泌诱导HIF促进了癌变,这一研究成果公布在Cell杂志上。这些研究在一些前沿创新性医疗手段中有很大的启发意义,也有望为致死性的疾病带来新思路。 彼得·约翰·拉特克利夫( Peter J. Ratcliffe),英国医学家、分子生物学家。生于兰开夏,1972年赴剑桥大学和圣巴多罗买医院学习医学,1978年毕业后转赴牛津。1989年建立了自己的新实验室。 拉特克利夫主要以对缺氧的研究知名。1989年建立新实验室后,拉特克利夫小组考察了红血球生成素的控制,这种物质在细胞缺氧后便会释放。 拉特克利夫的重要发现在于找到了氧气感应和信号通路中的关键转录因子,低氧诱导因子(HIF)之间的联系,为整个氧感应机制研究领域奠定了基础。此外,他的研究探究了细胞感应低氧浓度的分子机制。低氧是导致人类患病的一类重要因素,包括癌症、心脏病、中风和血管疾病。 格雷格·伦纳德·塞门扎(Gregg L. Semenza),美国医学家。知名于对生命系统如何利用、调节氧气的研究。他的团队发现HIF-1(缺氧诱导因子-1)所调控的基因能够作用于线粒体呼吸。它能够指导细胞对缺氧状况的特殊反应和心血管系统的变化。在一些癌症疾病中,能观察到HIF的过度表达。 塞门扎教授主要研究低氧条件在癌症、肺病和心脏病中的作用。自在上世纪90年代发现HIF-1α以来,西门扎及其研究小组一直从事HIF-1α研究,在不同类型的细胞中精确寻找被这一活化蛋白促进或抑制的大量基因。 更多可以关注诺贝尔奖官网:https://www.nobelprize.org/ 来源 | 央视新闻、科普中央厨房、诺贝尔奖官网

2019-10-08

@化工人,节后复工复产,这些安全隐患不容忽视!

节后复工复产时期是各类事故高发期,以下这些安全隐患,不容忽视       1、生产设施设备检修维修等高风险作业频繁,部分从业人员还沉浸在节日气氛中,思想容易松懈麻痹,可能因操作失当导致事故发生。       2、大量新员工陆续上岗,因岗前培训教育不到位,导致无证作业、违规违章误操作可能性增大。       3、部分生产经营单位为追求经营业绩“开门红”,超能力、超强度、超定员生产经营,安全生产条件得不到有效保障。       4、正值假期返程高峰,人流、车流、物流密集,各类诱发生产安全事故的风险交织叠加。       为预防和遏制安全事故的发生,各生产经营单位须重视复工复产安全工作,并结合自身实际,严格落实“三个一”等安全防范措施,确保节后安全复工复产       1. 制定复工复产方案       各生产经营单位在复工复产前应组织召开安全生产会议,研究制定切实可行的节后复工复产方案。特别是危化等高危行业,须严格落实各项安全防范制度,把安全职责落到每一个实处,同时要制定配套应急处置预案,并加强演练。       2. 做好复工复产安全教育培训       放假回来,最重要的就是让员工从心理意识上过渡到工作上来。对节后回原岗位工作的员工,要进行安全知识再培训、再教育,务必使每位员工具备基本的安全生产知识,熟悉相应工种的岗位危害;对换岗和新从业人员,要进行安全生产“三级”教育培训,提高从业人员专业技能和安全意识,培训不合格坚决不能上岗。       3. 加强节后复工复产安全检查       按照先排查、后复工复产的原则,复工复产第一天就必须开展安全检查,既要对生产设备设施、安全设施、消防应急设施、各种仪表、管道、阀门、罐区、危化品储存装置和厂区、厂房内标识标志、仓库内标志线等进行全面安全检查,也要对电气线路开展专项检查。       4. 严禁使用易燃液体擦拭机器设备       长假过后,复工复产时难免需进行各种清洗作业,在此期间,各生产经营单位严禁员工使用白电油、天那水等易燃液体擦拭机器、设备及地面油污。此外,清洗化粪池、污水池、罐体时,还需严格执行有限空间作业的有关规定。       5. 特种作业必须持证上岗       电工、电焊工等特种作业人员的操作极为关键,一旦出现违章操作,极易引发严重的安全事故,节后复工复产需对此类人员进行重点教育:一是进行特种作业时,必须要求作业人员持相应的特种作业操作证方可上岗;二是要求作业人员做好设施、设备、危险品的安全检查工作,并严格按照安全生产规章制度进行操作。       6. 加强消防安全隐患专项排查       各生产经营单位节后还应特别注意做好防火工作。不仅要建立健全安全防火责任制度,严格落实消防安全责任,还要杜绝违章操作,严禁违规用火、用油、用电、用气,并定期组织开展灭火和疏散逃生演练,提高员工自防自救能力。长假过后,工作模式开启,各生产经营单位要克服松懈麻痹思想 相关阅读 1、3大类244条!江苏公布化工企业常见安全隐患警示清单 2、化工企业如何做好安全隐患排查 这家浙企想到了“5G+AI” 3、山东发布!从严控制危化品建设项目,坚决关闭不具备安全生产条件企业 4、江苏发布2019年化工安全环保整治工作任务,信息量巨大!

2019-10-08

制药行业的巨大挑战:如何提高研发生产力

随着全球医疗保健预算日趋紧张,制药行业的盈利能力和增长前景正日渐承压。同时近几年制药行业面临的专利悬崖,大量廉价仿制药涌入市场,导致人类健康开拓者的原研制药公司损失巨大;另外不时爆出药物有效性和安全性问题,令全球药监部门加大了对药品的监管力度,创新药物的产出进一步减少。 新药研发成本持续推高。全球大型制药公司每年有约500亿美元的研发支出,平均每个NME推向市场的资金成本约18亿美元,且费用仍在进一步增加;需要提及,几乎没有证据表明,在新药投入成本上,小型生物技术公司较大型制药公司更有优势。 为了应对如此之多的巨大挑战,制药业提高研发生产力仍然是最佳的解决方案。提高制药业的盈利能力,只能通过实质性、可持续性的进行创新药物开发以及具有成本效益(领先的研发成本)新药的数量和质量来实现。本文给大家分享“How to improve R&D productivity: the pharmaceutical industry's grand challenge”文章观点,关于制药公司如何以及能够多大程度上提高研发生产力(R&D Productivity)展开讨论。 研发生产力全景图 研发生产力可以简单定义为新药(NME)创造的价值(医疗和商业)与研发该新药所需要投资之间的关系。根据该定义,研发生产力主要体现在以下两个方面:新药研发投入(研发效率,R&D Efficiency),以及新药产出对社会的效益(研发效用,R&D Effectiveness)。如下图所示。 研发效率:在规定期限内,研发体系将资源投入(如金钱、人力)转化为目标产品(如新药)的能力。研发效用:指的是研发系统能够生产出具有某些预期效果(如对患者具有医疗价值,具有实质商业价值的新药)产品的能力。研发生产力:可以看做是药物发现和开发过程效率和有效性的综合表现。高效研发体系的目标是能够有效地将资源投入转化为最有价值的产出。 研发生产力公式 下列为研发生产力公式(或称为“药品价值”公式),其中包括了任何给定研发管线中关于研发的效率和效用的关键要素。 P=WIP × p (TS) ×V/(CT × C) 其中P为研发生产力,其可视为同时由科学发现和临床试验数量构成的函数;WIP为整个研发过程中的工作量(work in process,如新药中的管线数量),p (TS)为技术成功的可能性(probability of technical success),V为研发的价值(value),CT为研发周期(circle time),C为研发成本(cost)。药品价值等式适用于一个或多个新药研发管线,提高上述公式分子数值或降低分母数值,均能提高研发生产力。 然而公式中的大多数参数联系较为紧密,改变其中一个参数通常可能对其他参数产生不利或有益的影响。如整个研发体系中需要足够丰富的产品管线(WIP),才能应对新药不同研发阶段的失败率;然而,仅仅增加WIP,无疑会增加整个研发成本(C),延长研发周期(CT),这反而可能导致研发生产力P的降低。又譬如,对新药后期临床试验进行各种适应症研究(WIP)会增加新药的CT和C;但目前越来越多的研究表明,扩展新药的适应症能够显著提升新药的价值(V),可能最终提升研发生产力P。 研发生产力模型 为了能够提升研发生产力P,需要回答如下关键问题: (1)哪些因素对P影响最大,(2)如何改进这些因素,以及(3)这些因素能够改进的程度。为了帮助解决上述问题,通过基于制药标杆论坛(Pharmaceutical Benchmarking Forum,PBF)提供的关于13家大型制药公司的研发绩效数据构建药物研发的经济模型。该模型的主要假设是基于典型大型制药公司开发一个NME成本平均约18亿美元,该模型的其他假设也符合制药业实际情况。通过对大型制药公司研发绩效数据的回顾,WIP、p (TS)、CT和C是影响研发生产力的关键因素。该模型如下图所示。 说明:P (TS):从一个阶段成功进入到下一个阶段的概率;WIP need for 1 launch:1个新药上市,每个研发阶段需要的管线数量;Cost per WIP per Phase:每个研发阶段中每种管线需要的成本;Cycle time:研发周期;Cost per launch (out of pocket):每推出一个新药上市需要总的付现成本(包括其中失败的管线,但不包括资金成本);% Total cost per NME:每个阶段在总成本中的占比;Cost ofcapital:资金成本,模型将付现成本的11%作为资金成本予以资本化;Cost per launch (capitalized):每推出一个新药上市的成本(资本化)。 模型中,成本估计包括“分子(molecule)”开发成本、探索性发现研究成本(如靶点发现和验证)和“非分子(non-molecule)”成本(如支持研发部门的非研发雇员的薪酬等间接费用)。需要说明的,该模型中的成本、周期等是基于模型中13家大型制药公司的研发数据;其他制药公司可根据自己公司实际予以调整。 3.1、研发生产力模型的探讨 临床研发阶段(临床I-III期)约占每个新药总成本的63%(其中临床II-III期约占76%),临床前药物开发占总成本的32%。但低估了药物早期发现的成本,因为识别和验证靶点所需的研究是高度可变的,使得其参数难以量化,因此在模型中排除了探索性发现的最早阶段成本。然而,目标靶点的正确选择是成功率p (TS)最重要决定因素之一,如目前众多制药公司在中枢神经系统性疾病(如帕金森综合征)的新药开发中折戟沉沙,其将影响整个研发生产力。 基于目前新药开发数据,从临床前研究(preclinical stage)到新药最终上市(launch),仅有约8%的成功率:其中小分子创新药的成功率约7%,生物创新药的成功率约11%。基于2000-2007年的PBF研究数据,新药从发现到上市的平均年限为11.4-13.5年(但不包括发现和验证目标靶点所需的时间),需要约18亿美元的资本化资金成本的投入。 根据该模型,如果仅通过公司内部研发,在靶点发现、先导物的发现和优化阶段,制药公司每年至少要有25个管线才能支持未来一个新药的成功上市;制药公司每年至少需要9个候选药物(小分子需要约11个候选药物)进入临床试验阶段,才有可能实现未来每年上市一个新药的速度。如果不能有效的提高研发生产力,对很多制药公司来说,持续满足新药不同研发阶段的管线需求是极其困难的。 由于没有足够的候选药物(尤其是临床阶段候选药物),近年来各大制药公司通过兼并&收购、授权许可或联合开发新药的形式,来缓解自身新药开发管线的枯竭。许多制药公司会发现他们的研发经费在新药研发的各个阶段没有得到适当的分配。太多的资源经常用于具有较低成功率p (TS)的管线或支持已上市药物的后期开发。这可能是目前新药出现枯竭的根本原因,也是大多数制药公司面临的业务挑战。 提高研发生产力的关键因素 通过研发生产力模型,一个新药的资本化成本约18亿美元,可以通过研究各个参数对总成本的贡献来识别研发过程中的关键因素。通过改变研发过程中不同阶段的P (TS)、CT、C的值(基于已有制药公司研发数据进行合理调整),考察其对研发效率的影响程度。如下图所示:参数敏感性分析图。 该参数敏感性分析的龙卷风图的中轴(每个新药研发的资本化成本约18亿美元)是基于研发生产力模型中的数据;通过改变研发不同阶段的成功率P (TS)、成本C和研发周期CT的数值,来考察这些参数对新药研发总成本的影响。其中成功率P(TS)相对于基准值(baseline value)上下变化约10%(绝对值),成本C和周期CT相对基准值上下变化约50%(相对值)。在龙卷风图中,基于参数对新药研发总成本影响大小,从上到下依次排列;其中蓝色为参数变化能够降低总成本,而红色为参数变化增了了新药总成本。 上图可以明显看出,临床阶段(尤其临床II、III期)的成功率P (TS)是整体研发效率最重要的决定因素。在基准模型中,II期临床阶段的成功率为34%(即进入II期临床阶段的候选新药中只有34%的成功率能够进入III期临床);如果该阶段的成功率降低至25%,那么一个新药总成本将增加到23亿美元;如果该阶段的成功率提高至50%,那么一个新药总成本将减少25%,减少至13.3亿美元。同样,III期临床的成功率降低至60%,那么每个NME的成本将增加16%,增加至20.7亿美元;如果该阶段的成功率提高至50%,那么一个新药总成本将减少12%,减少至15.6亿美元。 显然,临床II、III期的成功率P (TS)对研发效率至关重要。如果II、III期临床处于较高成功率,则新药研发总成本将降至11.7亿美元;反之,新药研发总成本将增值27亿美元,提高新药研发效率很大程度依赖于II、III期临床试验的成功率。但由于越来越多的新靶点性质未知,监管机构对候选药物安全、有效性的要求进一步严格(更优的风险-收益比,这些均严重影响了II、III期临床试验的成功率。 4.1 研发管线WIP 新药不同研发阶段的管线数量影响新药的产出,下图研究了II、III期临床试验的成功率对WIP的影响, 横坐标:II期临床的成功率;纵坐标:一个新药成功上市,所需要I期临床候选药物的数量;曲线:不同颜色代表了在某一III期临床成功率下,为确保每年一个新药上市,II期临床成功率和I期临床候选药物数量的关系。 如果II、III期临床成功率分别为25%、50%,则每年进入I期临床候选药物的数量应约为16个,才有可能成功开发出一个新药;而若II、III期临床成功率分别提高至50%、80%,则每年I期临床所需候选药物的数量减少至1/3(约5个)。也就是说,在其他条件完全相同的情况下,投入相同的研发成本,提高II、III期临床试验的成功率能够将研发效率提高2-3倍。 4.1.1 WIP与CT 然而仅仅增加WIP,而没有足够的开发能力和资源,则可能大大增加研发周期CT,最终影响新药研发效率。所以在设定新药开发各个阶段的WIP时,必须准确估计所需要的开发资源和能力,以便实现最佳平衡,快速推进候选药物的开发。 4.1.2 WIP与C 制药公式如何在大幅增加产品管线WIP的同时不显著增加新药研发的总成本呢?生产力模型和龙卷风图数据显示,首先新药研发早期阶段(尤其临床开发的早期阶段)应具有丰富的产品管线(WIP)。在不显著增加研发总成本的前提下,为了给研发早期阶段的WIP提供资金,需要减少研发后期(如III期临床试验)的资金投入,理想情况是将原本用于III期临床试验失败候选药物的资金提供给I、II期临床候选药物。 III期临床试验和新药早期开发(主要是I、II期临床)需要形成新型的正反馈循环。根据研发生产力模型,单个III期临床候选药物的开发成本(约1.5亿美元)几乎是10个I期临床候选药物成本(约1500万美元)的总和。通过减少III期临床试验的成本,将节约下来的资金提供给I、II期临床,以便在新药开发早期拥有更丰富的WIP。只有那些拥有确定有效性(通过I期临床的概念性验证(proof-of-concept ,POC)和II期临床的确证)和安全性的候选药物才有可能进入III期临床,这样III期临床的失败仅仅与罕见和不可预见的安全性问题有关,从而III期临床试验的成功率P (TS)得到大大的提升;III期临床P (TS)的提升,能够显著降低新药研发成本(C);节约出来的资金可以支持更多的新药早期开发。整个循环的关键点在于临床开发的早期阶段应具有丰富的WIP,通过早期临床试验的筛选和POC,选择具有更高P (TS)的候选药物进入临床后期的开发。 4.1.3 WIP与制药网络(Fully Integrated Pharmaceutical Network,FIPNet) 如何有效提高WIP,P (TS)和V的同时,不显著增加C和CT,从而提升研发生产力?首要需要解决制药公司本身能力限制和缺乏聚焦的问题。传统新药研发模式是所有新药研发活动均在制药公司自身内部完成,而制药公司本身能力不足以及制药公司在整个研发过程中缺乏聚焦,最终导致其研发生产力低下。充分整合的制药网络(FullyIntegrated Pharmaceutical Network,FIPNet)作为新型的新药研发模式,其具有高度网络化、经济性、合作和杠杆化,实现了整个制药行业资源有效整合,大大提高研发能力。FIPNet可以更多的获得知识产权(IP)、候选新药、开发能力、资本等;FIPNet模式包括:基于功能外包(如毒理、临床开发)、基于分子(molecule-based)的风险共担、对小型创新公司股权投资或与大型制药公司建立合资企业。 4.1.4 WIP与V和P (TS) 目前关于WIP的讨论,主要集中在如何确保丰富的WIP以增加新药获批数量、WIP与研发生产力关键因素之间的关系。然而每条研发管线都代表了费用,制药公司每年研发费用的预算是有限,这也就决定了每年可承担的WIP数量。目前制药业常见的错误在于为确保新药产出,过分关注每年的WIP数量,而忽略了V和P (TS)。虽然每年更多的研发管线将有助于更多的新药产出,但如果研发成本同样成比例增长,那么该策略将不会带来更高的研发生产力。只有提升了V和P (TS),才有可能用丰富的WIP创造出更多的新药产出,这才能实质性的提高研发生产力。 4.2 新药价值V 新药的价值必须通过各种客观测量指标(如降低死亡率、发病率等),建立可以量化的良好收益风险比或较好的经济效益来衡量。因此,为提高研发效率,在开发早期就应充分了解新药的最终价值,以及如何将这些信息用于后期临床开发和权衡投资组合决策。 由于临床患者存在生物遗传异质性,如何最大限度提高患者收益风险比和新药潜在价值,存在诸多挑战。而精准治疗(如生物标志物)的出现,为增加新药治疗有效性并降低风险提供了可能。以生物标志物为代表的精准治疗,为新药选择了正确的患者、正确的剂量和给药周期,提高了新药的有效性,降低了严重不良反应,提高了临床后期的P (TS),最终提升新药的总体价值。如伊马替尼生物标志物PDGFR,曲妥珠单抗的Her2,这些生物标志物的开发,提高新药研发P (TS),提升了新药价值。为了后期进一步优化生物标志物,应尽早开展生物标志物的选择和开发。虽然生物标志物会减少新药市场份额,但迄今为止,新药价值(V)的增加已经抵消了市场份额下降,特别是在肿瘤学。 4.3 研发周期CT 参数敏感性分析中,理论上减少II、III期临床的开发周期,会降低研发成本,但实际操作过程中,为了科学、充分衡量风险-收益比,一般不会减少II、III期临床的开发周期。新药研发具有较大的不确定性,所以主要从宏观层面减少研发周期,旨在减少非增值研发过程和“单元过程”之间的等待时间等。如下几种策略将有助于减少整体研发周期: (1)产品管线的合理组合。新产品管线的选择,应将其CT视为所有产品线总体CT的一部分,这样有助于减少总体CT。如心血管新药的临床试验可能需要数年,而抗肿瘤新药临床试验可能仅需数月,因此,在选择临床开发项目时,需考虑不同疾病的特异性对总管线流动性的影响。 (2)采用管理学中“关键链(critical chain)”工具。确定关键的任务链,改进或优化项目计划中的业务流程(如采用信息化技术支持临床试验数据的实时采集);在项目执行前确定优先级和执行顺序;项目过程中,严密监控关键链,若发生延误,重新配置关键链,以便避免项目延期。另外,通过关键任务链中,去除非增值的活动(如官僚化的研发管理体制),同样可以减少研发周期。 (3)采用适应性或无缝的II期和III期临床试验设计,能减少临床开发阶段的CT;同时还能提高P (TS)。 整个研发周期的减少,不仅能够降低新药开发总成本;同时还有助于新药在有限的专利期内获得更长的市场独占,进而提高新药的价值V。 4.4 研发成本C 研发项目的成本可分为三类:研发项目增值的直接支出、非研发项目增值的直接支出、管理费用。实践中,一般通过减少后两种支出来降低研发项目成本。另外,可通过低成本的劳动力资源(如外包)来降低研发成本。注意,在削减成本时,应以不损害研发管线的价值V和成功率P (TS)为前提。 4.5 新药研发成功率P (TS) 毫无疑问,提高候选药物在临床开发阶段的成功率是整个新药研发的最大挑战和机遇。正如敏感性分析所示,降低II、III期临床试验的失败率是提高研发效率,降低研发成本最有力的手段。 候选药物研发失败的原因可分为技术性(如II期临床试验显示候选药物安全性存在问题)和非技术性(如商业原因改变研发策略或终止研发),本文主要讨论技术性原因导致的II、III期临床试验失败。 4.5.1 I、II期临床试验 I、II期临床试验失败的主要原因:由于动物药理模型或临床前ADMET(吸收、分布、代谢、排泄和毒性)的研究未能预测到人体口服生物利用度差,药代动力学或毒性问题导致有效剂量和毒性剂量的重叠,候选药物边际安全性较差。通过改善候选药物临床前的ADMET性质,有助于提高I、II期临床试验成功率。 与小分子相比,由于具有高度特异性的靶标结合性,人源化的单克隆抗体大大降低了“脱靶”毒性,从而有助于提高I、II期的成功率。 4.5.2 II、III期临床试验 II、III期临床试验失败的主要原因是候选药物缺乏有效性或安全性。虽然上个世纪九十年代以来,早期排除不具有类药性化合物的技术日趋成熟;目前新药开发后期(如II期临床试验失败率高达66%)失败率的增加,主要由全新靶点出现不可预测的副作用(即生物机制)和监管机构日益加强的安全性要求(即更佳的风险收益比)。 减少II、III期临床试验成功率,主要有以下两种策略:(1)选择更优的靶点,选择经充分验证的药物靶点。(2)在临床试验早期(特别临床I期)即开展POC研究,可借助于生物标记物和替代终点技术。 目标靶点的选择是药物发现和开发过程中一个关键的早期研究,其通常在新药上市前的10-15年开始,并耗费大量时间和资源用来识别、调节、验证该靶点对治疗疾病的可行性。虽然随着基因组学和蛋白质组学的进展,产生了大量新的潜在药物靶点;但迄今为止,经过充分验证、适用于治疗疾病的新靶点寥寥无几。 目标靶点的选择还与降低后期临床试验失败率的第二个关键策略有关:即早期临床试验建立POC。这就要求首先选择合适的目标靶点和疾病状态,以便论证早期建立POC可行性。生物标志物、替代终点通常是POC研究中必不可少的工具;通过选择合适、能够快速指示候选药物有效性和安全性的生物标志物和替代终点,以便及早做出候选药物“go/no-go”的决策,尤其在肿瘤治疗领域。 4.5.3 “速赢速败(quickwin, fast fail)”新药开发模式 鉴于绝大数候选药物注定会失败,那么如何使这些候选药物更快速、更便宜的失败?目前可通过“速赢速败”新药开发模式实现,即通过早期临床试验的POC,快速筛选出合适的候选药物,减少进入II、III期临床试验候选药物数量,提高II、III期临床成功率,节约后期临床开发高昂的成本。后期临床试验节约的成本重新投入到新药的前期开发,用于发现和验证新靶点,针对靶点开发充足的管线。通过早期临床试验的POC进行“速赢速败”,进一步提高研发生产力。“速赢速败”如下图所示: (a)传统新药开发模式;(b)“速赢速败(quick win, fast fail)”新药开发模式;CS:candidate selection; FED:firstefficacy dose;FHD:firsthuman dose;PD:product decision。 展望 制药业是一个需要高度创新的行业,培养科学创造力和偶然的医学发现显然是制药业过去、现在、未来成功的重要因素。无论是药物靶点的选择、临床试验设计,还是解释临床数据以推进候选药物进一步临床开发,任何成功的研发组织都无法取代科学和临床直觉。简单地说,“好的过程永远不会取代好的人或好的科学”。但好的过程和好的科学相辅相成,高效的研发生产力能够实现最大的研发投资回报。

2019-10-06